Advertisements
Advertisements
प्रश्न
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`
योग
उत्तर
Put `cos^2x` = t ⇒ `−2cosxsinxdx` = dt ⇒ `sin2xdx = -dt`
The given integral = `- int (dt)/sqrt(3^2 - t^2) = - sin^(-1) t/3 + c = - sin^(-1) (cos^2x)/3 + c`
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\sqrt{x}\left( 3 - 5x \right) dx\]
\[\int\left( \sec^2 x + {cosec}^2 x \right) dx\]
` ∫ cos mx cos nx dx `
\[\int\text{sin mx }\text{cos nx dx m }\neq n\]
\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]
\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]
\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]
` ∫ tan x sec^4 x dx `
` ∫ sec^6 x tan x dx `
\[\int\frac{1}{2 x^2 - x - 1} dx\]
\[\int\frac{x}{\sqrt{4 - x^4}} dx\]
\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]
\[\int \left( \log x \right)^2 \cdot x\ dx\]
` ∫ x tan ^2 x dx
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]
\[\int e^x \left( \cos x - \sin x \right) dx\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]
\[\int\frac{1}{e^x + e^{- x}} dx\]
\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]
\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]
\[\int\frac{\log x}{x^3} \text{ dx }\]
\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int x^2 \tan^{- 1} x\ dx\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]