हिंदी

∫ 3 X + 1 √ 5 − 2 X − X 2 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

योग

उत्तर

\[\text{ Let I } = \int\frac{\left( 3x + 1 \right) dx}{\sqrt{5 - 2x - x^2}}\]

\[\text{ Consider, }3x + 1 = A \frac{d}{dx} \left( 5 - 2x - x^2 \right) + B\]

\[ \Rightarrow 3x + 1 = A \left( - 2 - 2x \right) + B\]

\[ \Rightarrow 3x + 1 = \left( - 2A \right) x - 2A + B\]

\[\text{ Equating Coefficients of like terms }\]

\[ - 2A = 3\]

\[ \Rightarrow A = - \frac{3}{2}\]

\[\text{ And }\]

\[ - 2A + B = 1\]

\[ \Rightarrow - 2 \times - \frac{3}{2} + B = 1\]

\[ \Rightarrow B = 1 - 3\]

\[ \Rightarrow B = - 2\]

\[ \therefore I = \int\left[ \frac{- \frac{3}{2} \left( - 2 - 2x \right) - 2}{\sqrt{5 - 2x - x^2}} \right]dx\]

\[ = - \frac{3}{2}\int\frac{\left( - 2 - 2x \right) dx}{\sqrt{5 - 2x - x^2}} - 2\int\frac{dx}{\sqrt{5 - 2x - x^2}}\]

\[ = - \frac{3}{2}\int\frac{\left( - 2 - 2x \right) dx}{\sqrt{5 - 2x - x^2}} - 2\int\frac{dx}{\sqrt{5 - \left( x^2 + 2x \right)}}\]

\[ = - \frac{3}{2}\int\frac{\left( - 2 - 2x \right) dx}{\sqrt{5 - 2x - x^2}} - 2\int\frac{dx}{\sqrt{5 - \left( x^2 + 2x + 1 - 1 \right)}}\]

\[ = - \frac{3}{2}\int\frac{\left( - 2 - 2x \right) dx}{\sqrt{5 - 2x - x^2}} - 2\int\frac{dx}{\sqrt{6 - \left( x + 1 \right)^2}}\]

\[ = - \frac{3}{2}\int\frac{\left( - 2 - 2x \right) dx}{\sqrt{5 - 2x - x^2}} - 2\int\frac{dx}{\sqrt{\left( \sqrt{6} \right)^2 - \left( x + 1 \right)^2}}\]

\[\text{ let 5 - 2x - x^2 = t }\]

\[ \Rightarrow \left( - 2 - 2x \right) dx = dt\]

\[ \therefore I = - \frac{3}{2}\int\frac{dt}{\sqrt{t}} - 2\int\frac{dx}{\sqrt{\left( \sqrt{6} \right)^2 - \left( x + 1 \right)^2}}\]

\[ = - \frac{3}{2} \times 2\sqrt{t} - 2 \sin^{- 1} \left( \frac{x + 1}{\sqrt{6}} \right) + C\]

\[ = - 3\sqrt{5 - 2x - x^2} - 2 \sin^{- 1} \left( \frac{x + 1}{\sqrt{6}} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.21 [पृष्ठ ११०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.21 | Q 5 | पृष्ठ ११०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int \left( 3x + 4 \right)^2 dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int \cot^5 x  \text{ dx }\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{x^3}{x + 1}dx\] is equal to

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int \cos^5 x\ dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int \sec^4 x\ dx\]


\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×