हिंदी

∫ E X ( Log X + 1 X 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]
योग

उत्तर

\[\text{ Let I }= \int\left( \log x + \frac{1}{x^2} \right) e^x dx\]

\[ = \int e^x \left( \log x + \frac{1}{x} - \frac{1}{x} + \frac{1}{x^2} \right)dx\]

\[ = \int e^x \left( \log x + \frac{1}{x} \right)dx + \int e^x \left( - \frac{1}{x} + \frac{1}{x^2} \right)dx\]

\[\begin{array} "let \text{  e}^x \log x = t \\ Diff\ both\ sides\ \\ \left( e^x \log x + e^x \frac{1}{x} \right)dx = dt \end{array}\begin{array} |"let  \text{ e}^x \left( - \frac{1}{x} \right) = p \\ Diff\ both\ sides\ \\ \left( e^x \frac{- 1}{x} + e^x \frac{1}{x^2} \right)dx = dp\end{array}\]

\[ \therefore I = \int dt + \int dp\]

\[ = t + p + C\]

\[ = e^x \log x + e^x \frac{- 1}{x} + C\]

\[ = e^x \left( \log x - \frac{1}{x} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.26 [पृष्ठ १४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.26 | Q 16 | पृष्ठ १४३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×