Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I } = \int \frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{ dx }\]
\[\text{Dividing numerator and denominator by} \cos^2 x\]
\[ \Rightarrow I = \int \frac{\frac{1}{\cos^2 x}}{4 + 9 \tan^2 x}dx\]
\[ = \int \frac{\sec^2 x}{4 + 9 \tan^2 x}dx\]
\[\text{ Let tan } x = t\]
` ⇒ sec^2 x dx = dt `
\[ \therefore I = \int \frac{dt}{4 + 9 t^2}\]
\[ = \frac{1}{9}\int \frac{dt}{\frac{4}{9} + t^2}\]
\[ = \frac{1}{9}\int \frac{dt}{\left( \frac{2}{3} \right)^2 + t^2}\]
\[ = \frac{1}{9} \times \frac{3}{2} \text[\text{ tan }^{- 1} \left( \frac{t}{\frac{2}{3}} \right) + C\]
\[ = \frac{1}{6} \text{ tan }^{- 1} \left( \frac{3t}{2} \right) + C\]
\[ = \frac{1}{6} \text{ tan }^{- 1} \left( \frac{3 \tan x}{2} \right) + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integrals:
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]