हिंदी

∫ 1 ( X − 1 ) √ 2 X + 3 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]
योग

उत्तर

\[\text{ We  have, }\]
\[I = \int \frac{dx}{\left( x - 1 \right) \sqrt{2x + 3}}\]
\[\text{ Putting 2x} + 3 = t^2 \]
\[ \Rightarrow x = \frac{t^2 - 3}{2}\]
\[\text{ Diff both sides}\]
\[dx = t \text{ dt}\]
\[ \therefore I = \int \frac{t dt}{\left[ \frac{t^2 - 3}{2} - 1 \right]t}\]
\[ = \int\frac{2 \text{ dt }}{t^2 - 3 - 2}\]
\[ = \frac{2\text{ dt}}{t^2 - 5}\]
\[ = 2\int\frac{dt}{t^2 - \left( \sqrt{5} \right)^2}\]
\[ = 2 \times \frac{1}{2\sqrt{5}}\text{ log } \left| \frac{t - \sqrt{5}}{t + \sqrt{5}} \right| + C\]
\[ = \frac{1}{\sqrt{5}}\text{ log }\left| \frac{\sqrt{\text{ 2x + 3}} - \sqrt{5}}{\sqrt{2x + 3} + \sqrt{5}} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.32 [पृष्ठ १९६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.32 | Q 2 | पृष्ठ १९६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int \cot^5 x\ dx\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×