हिंदी

∫ X 2 − 3 X + 1 X 4 + X 2 + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]
योग

उत्तर

\[\text{ We have,} \]
\[I = \int\left( \frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \right)dx\]
\[ = \int\frac{\left( x^2 + 1 \right)dx}{x^4 + x^2 + 1} - 3\int\frac{x \text{ dx}}{x^4 + x^2 + 1} . . . . . \left( 1 \right)\]
\[ = I_1 - 3 I_2 \text{ where I}_1 = \int\frac{\left( x^2 + 1 \right)dx}{x^4 + x^2 + 1}, I_2 = \int\frac{x dx}{x^4 + x^2 + 1}\]
\[ I_1 = \int\left( \frac{x^2 + 1}{x^4 + x^2 + 1} \right)dx\]
\[\text{Dividing numerator and denominator by} \text{ x}^2 \]
\[ I_1 = \int\frac{\left( 1 + \frac{1}{x^2} \right)dx}{x^2 + \frac{1}{x^2} + 1}\]
\[ = \int\frac{\left( 1 + \frac{1}{x^2} \right)dx}{x^2 + \frac{1}{x^2} - 2 + 3}\]
\[ = \int\frac{\left( 1 + \frac{1}{x^2} \right)dx}{\left( x - \frac{1}{x} \right)^2 + \left( \sqrt{3} \right)^2}\]
\[\text{ Let x} - \frac{1}{x} = t\]
\[ \Rightarrow \left( 1 + \frac{1}{x^2} \right)dx = dt\]
\[ \therefore I_1 = \int\frac{dt}{t^2 + \left( \sqrt{3} \right)^2}\]
\[ I_1 = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{t}{\sqrt{3}} \right) + C_1 \]
\[ I_1 = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{x - \frac{1}{x}}{\sqrt{3}} \right) + C_1 . . . . . \left( 2 \right)\]
\[ I_2 = \int\frac{x \text{ dx }}{x^4 + x^2 + 1}\]
\[\text{ Putting  x}^2 = t\]
\[ \Rightarrow 2x\text{ dx } = dt\]
\[ \Rightarrow x \text { dx }= \frac{dt}{2}\]
\[ \therefore I_2 = \frac{1}{2}\int\frac{dt}{t^2 + t + 1}\]
\[ = \frac{1}{2}\int\frac{dt}{t^2 + t + \frac{1}{4} + \frac{3}{4}}\]
\[ = \frac{1}{2}\int\frac{dt}{\left( t + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}\]
\[ = \frac{1}{\frac{\sqrt{3}}{2}} \times \frac{1}{2}\left[ \tan^{- 1} \left( \frac{t + \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right) \right] + C_2 \]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{2t + 1}{\sqrt{3}} \right) + C_2 \]
\[ I_2 = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{2 x^2 + 1}{\sqrt{3}} \right) + C_2 . . . \left( 3 \right)\]
\[\text{ From  equating} \left( 1 \right), \left( 2 \right) \text{ and } \left( 3 \right) \text{ we have}\]
\[I = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{x - \frac{1}{x}}{\sqrt{3}} \right) + C_1 - 3 \times \left[ \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{2 x^2 + 1}{\sqrt{3}} \right) + C_2 \right]\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{x^2 - 1}{\sqrt{3}x} \right) - \sqrt{3} \tan^{- 1} \left( \frac{2 x^2 + 1}{\sqrt{3}} \right) + \text{ C where C = C}_1 + 3 C_2\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.31 [पृष्ठ १९०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.31 | Q 5 | पृष्ठ १९०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

`∫     cos ^4  2x   dx `


\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

` ∫      tan^5    x   dx `


\[\int \cos^5 x \text{ dx }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int x \cos x\ dx\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


\[\int \left( e^x + 1 \right)^2 e^x dx\]


Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×