Advertisements
Advertisements
प्रश्न
\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]
योग
उत्तर
\[\int\frac{dx}{\sqrt{a^2 - b^2 x^2}}\]
\[ = \int\frac{dx}{\sqrt{b^2 \left( \frac{a^2}{b^2} - x^2 \right)}}\]
\[ = \frac{1}{b}\int\frac{dx}{\sqrt{\left( \frac{a}{b} \right)^2 - x^2}}\]
\[ = \frac{1}{b} \sin^{- 1} \left( \frac{xb}{a} \right) + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{1 - \sin x} dx\]
\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2} \text{dx} \]
\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]
\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
` ∫ {"cosec" x }/ { log tan x/2 ` dx
\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]
\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]
\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]
\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]
\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]
\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]
\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]
\[\int x^3 \text{ log x dx }\]
\[\int x e^{2x} \text{ dx }\]
\[\int \left( \log x \right)^2 \cdot x\ dx\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]
\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int x^3 \tan^{- 1}\text{ x dx }\]
\[\int x \sin^3 x\ dx\]
\[\int e^x \left( \cos x - \sin x \right) dx\]
\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]
\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]
\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]
\[\int\frac{1}{\sin x + \sin 2x} dx\]
\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]
\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]
\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]
\[\int \sin^4 2x\ dx\]
\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]
\[\int \tan^5 x\ \sec^3 x\ dx\]
\[\int \log_{10} x\ dx\]
\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]