हिंदी

∫ Sin 2 X a Cos 2 X + B Sin 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 

योग

उत्तर

\[\text{Let I} = \int\frac{\sin 2x}{a \cos^2 x + b \sin^2 x}dx\]
\[ = \int\frac{\sin 2x}{a\left( 1 - \sin^2 x \right) + b \sin^2 x} dx\]
\[ = \int\frac{\sin 2x}{\left( b - a \right) \sin^2 x + a} dx\]

`  "Putting "     s   "in" ^2 x = t `
\[ \Rightarrow 2\sin x . \cos x = \frac{dt}{dx}\]
\[ \Rightarrow \sin 2x = \frac{dt}{dx}\]
\[ \Rightarrow \text{sin 2x dx }= dt\]
\[ \therefore I = \int\frac{1}{\left( b - a \right)t + a}dt\]
\[ = \frac{1}{\left( b - a \right)} \text{ln }\left| \left( b - a \right)t + a \right| + C \left[ \because \int\frac{1}{ax + b}dx = \frac{1}{a}\text{ln}\left| ax + b \right| + C \right]\]
\[ = \frac{1}{\left( b - a \right)} \text{ln }\left| \left( b - a \right) \sin^2 x + a \right| + C \left[ \because t = \sin^2 x \right]\]
\[ = \frac{1}{\left( b - a \right)} \text{ln }\left| b \sin^2 x + a\left( 1 - \sin^2 x \right) \right| + C\]
\[ = \frac{1}{\left( b - a \right)} \text{ln} \left| b \sin^2 x + a \cos^2 x \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.08 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.08 | Q 19 | पृष्ठ ४७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int {cosec}^3 x\ dx\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int x \sin x \cos 2x\ dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×