Advertisements
Advertisements
प्रश्न
\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]
योग
उत्तर
\[\int\left( \frac{x^4 + x {}^2 - 1}{x^2 + 1} \right)dx\]
\[ \Rightarrow \int\left( \frac{x^4 + x^2}{x^2 + 1} \right)dx - \int\frac{1}{x^2 + 1}dx\]
\[ \Rightarrow \int\frac{x^2 \left( x^2 + 1 \right)}{\left( x^2 + 1 \right)}dx - \int\frac{1}{x^2 + 1}dx\]
\[ \Rightarrow \int x^2 dx - \int\frac{1}{x^2 + 1}dx\]
\[ \Rightarrow \frac{x^3}{3} - \tan^{- 1} \left( x \right) + C ...........\left( \because \int\frac{1}{x^2 + a^2}dx = \frac{1}{a} \tan^{- 1} \frac{x}{a} + C \right)\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]
\[\int\frac{x^6 + 1}{x^2 + 1} dx\]
\[\int \left( \tan x + \cot x \right)^2 dx\]
\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]
\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]
\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]
\[\int \text{sin}^2 \left( 2x + 5 \right) \text{dx}\]
\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]
\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]
\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]
\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]
\[\int x^3 \cos x^4 dx\]
` ∫ sec^6 x tan x dx `
\[\int \cot^5 x \text{ dx }\]
\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]
\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]
`int 1/(cos x - sin x)dx`
\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]
\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]
\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]
\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]
\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]
\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]
\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{1 - x^4}dx\]
\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to
\[\int\frac{1}{e^x + 1} \text{ dx }\]
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int x\sqrt{2x + 3} \text{ dx }\]
\[\int x \sin^5 x^2 \cos x^2 dx\]
\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]
\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]
\[\int\frac{\cos^7 x}{\sin x} dx\]