हिंदी

∫ Sec 2 X 1 − Tan 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]
योग

उत्तर

`  ∫   sec^2 x /{1- tan^2 x }` dx
\[\text{let }\tan x = t\]
\[ \Rightarrow \sec^2 \text{ x dx }= dt\]
Now, `  ∫   sec^2 x /{1- tan^2 x }` dx

\[ = \int\frac{dt}{1 - t^2}\]
\[ = \frac{1}{2} \text{ log } \left| \frac{1 + t}{1 - t} \right| + C\]
\[ = \frac{1}{2} \text{ log }\left| \frac{1 + \tan x}{1 - \tan x} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.16 [पृष्ठ ९०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.16 | Q 1 | पृष्ठ ९०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


` ∫   cos  3x   cos  4x` dx  

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int \sin^5 x \cos x \text{ dx }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int x e^x \text{ dx }\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{1}{1 + \tan x} dx =\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int \sin^4 2x\ dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×