Advertisements
Advertisements
प्रश्न
\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]
योग
उत्तर
` ∫ sec^2 x /{1- tan^2 x }` dx
\[\text{let }\tan x = t\]
\[ \Rightarrow \sec^2 \text{ x dx }= dt\]
Now, ` ∫ sec^2 x /{1- tan^2 x }` dx
\[ = \int\frac{dt}{1 - t^2}\]
\[ = \frac{1}{2} \text{ log } \left| \frac{1 + t}{1 - t} \right| + C\]
\[ = \frac{1}{2} \text{ log }\left| \frac{1 + \tan x}{1 - \tan x} \right| + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]
If f' (x) = x + b, f(1) = 5, f(2) = 13, find f(x)
` ∫ cos 3x cos 4x` dx
\[\int \tan^{3/2} x \sec^2 \text{x dx}\]
\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]
\[\int2x \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]
\[\ ∫ x \text{ e}^{x^2} dx\]
\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx }\]
\[\int \sin^5 x \cos x \text{ dx }\]
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\frac{1}{x^2 + 6x + 13} dx\]
\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]
\[\int\frac{x}{x^2 + 3x + 2} dx\]
\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]
\[\int x e^x \text{ dx }\]
\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]
\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]
\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]
\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]
Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]
Write a value of
\[\int e^{3 \text{ log x}} x^4\text{ dx}\]
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
\[\int\frac{1}{1 + \tan x} dx =\]
\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]
\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\] is equal to
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]
\[\int \text{cosec}^2 x \text{ cos}^2 \text{ 2x dx} \]
\[\int \sin^4 2x\ dx\]
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int \sin^3 x \cos^4 x\ \text{ dx }\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]
\[\int\frac{1}{\sec x + cosec x}\text{ dx }\]
\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]
\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]