हिंदी

∫ 1 X ( X N + 1 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]
योग

उत्तर

We have,

\[I = \int\frac{dx}{x \left( x^n + 1 \right)}\]

\[ = \int\frac{x^{n - 1} dx}{x^{n - 1} x \left( x^n + 1 \right)}\]

\[ = \int\frac{x^{n - 1} dx}{x^n \left( x^n + 1 \right)}\]

Putting `x^n = t`

\[ \Rightarrow n x^{n - 1} dx = dt\]

\[ \Rightarrow x^{n - 1} dx = \frac{dt}{n}\]

\[ \therefore I = \frac{1}{n}\int\frac{dt}{t \left( t + 1 \right)}\]

\[\text{Let }\frac{1}{t \left( t + 1 \right)} = \frac{A}{t} + \frac{B}{t + 1}\]

\[ \Rightarrow \frac{1}{t \left( t + 1 \right)} = \frac{A \left( t + 1 \right) + Bt}{t \left( t + 1 \right)}\]

\[ \Rightarrow 1 = A \left( t + 1 \right) + Bt\]

Putting `t + 1 = 0`

\[ \Rightarrow t = - 1\]

\[1 = A \times 0 + B \left( - 1 \right)\]

\[ \Rightarrow B = - 1\]

Putting `t = 0`

\[1 = A \left( 0 + 1 \right) + B \times 0\]

\[ \Rightarrow A = 1\]

Then,

\[I = \frac{1}{n}\int\frac{dt}{t} - \frac{1}{n}\int\frac{dt}{t + 1}\]

\[ = \frac{1}{n} \log \left| t \right| - \frac{1}{n}\log \left| t + 1 \right| + C\]

\[ = \frac{1}{n} \log \left| \frac{t}{t + 1} \right| + C\]

\[ = \frac{1}{n} \log \left| \frac{x^n}{x^n + 1} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 23 | पृष्ठ १७७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int x \cos^2 x\ dx\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int\frac{1}{1 + \tan x} dx =\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int \tan^5 x\ dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int \log_{10} x\ dx\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×