हिंदी

∫ Sin − 1 √ X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \sin^{- 1} \sqrt{x}\ dx\]
योग

उत्तर

\[\text{We have}, \]

\[I = \int \sin^{- 1} \sqrt{x} dx\]

\[\text{ Putting } \sqrt{x} = \sin \theta\]

\[ \Rightarrow x = \sin^2 \theta\]

\[ \Rightarrow dx = 2 \sin \theta \text{ cos } \text{ θ   dθ }\]

\[ \Rightarrow dx = \text{ sin}\left( 2\theta \right)d\theta\]

\[ \therefore I = \int \theta \text{ sin } \left( 2\theta \right)d\theta\]

\[ = \theta\left[ \frac{- \text{ cos }2\theta}{2} \right] - \int1\left( \frac{- \text{ cos }2\theta}{2} \right)d\theta\]

\[ = - \frac{\theta \text{ cos }\left( 2\theta \right)}{2} + \frac{1}{2}\int\text{ cos }\left( 2\theta \right)d\theta\]

\[ = - \frac{\theta \text{ cos} \left( 2\theta \right)}{2} + \frac{1}{2}\left[ \frac{\text{ sin} \left( 2\theta \right)}{2} \right] + C\]

\[ = \frac{- \sin^{- 1} \sqrt{x} \left( 1 - 2 \text{ sin}^2 \theta \right)}{2} + \frac{1}{2}\left[ \frac{2 \sin \theta \cos \theta}{2} \right] + C\]

\[ = \frac{- \sin \sqrt{x}\left( 1 - 2x \right)}{2} + \frac{\sin \theta\sqrt{1 - \sin^2 \theta}}{2} + C\]

\[ = \frac{- \sin^{- 1} \sqrt{x} \left( 1 - 2x \right)}{2} + \frac{\sqrt{x} \sqrt{1 - x}}{2} + C\]

\[ = - \frac{1}{2} \sin^{- 1} \left( \sqrt{x} \right) \left( 1 - 2x \right) + \frac{1}{2}\sqrt{x - x^2} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 110 | पृष्ठ २०५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \sin^5 x \text{ dx }\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int x \cos x\ dx\]

\[\int x e^{2x} \text{ dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×