हिंदी

∫ 1 x √ 1 + x n dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]
योग

उत्तर

\[\text{We have}, \]
\[I = \int\frac{dx}{x \sqrt{1 + x^n}}\]
\[ = \int\frac{x^{n - 1} dx}{x^{n - 1}\text{  x}^1 \sqrt{1 + x^n}}\]
\[ = \int\frac{x^{n - 1} dx}{x^n \sqrt{1 + x^n}}\]
\[\text{Putting  x}^n = t\]
\[ \Rightarrow \text{ n  x}^{n - 1} dx = dt\]
\[ \Rightarrow x^{n - 1} \text{ dx} = \frac{dt}{n}\]
\[ \therefore I = \frac{1}{n}\int\frac{dt}{t \sqrt{1 + t}}\]
\[\text{ let 1 + t = p}^2 \]
\[ \Rightarrow \text{ dt = 2p dp }\]
\[ \therefore I = \frac{1}{n}\int\frac{\text{ 2p dp}}{\left( p^2 - 1 \right) p}\]
\[ = \frac{2}{n}\int\frac{dp}{p^2 - 1^2}\]
\[ = \frac{2}{n} \times \frac{1}{2} \text{ log} \left| \frac{p - 1}{p + 1} \right| + C\]
\[ = \frac{1}{n} \text{ log} \left| \frac{\sqrt{1 + t} - 1}{\sqrt{1 + t} + 1} \right| + C\]
\[ = \frac{1}{n} \text{ log } \left| \frac{\sqrt{1 + x^n} - 1}{\sqrt{1 + x^n} + 1} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 101 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

`∫     cos ^4  2x   dx `


\[\int \cos^2 \frac{x}{2} dx\]

 


Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int x^3 \sin x^4 dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int x^3 \cos x^2 dx\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int x \sin^3 x\ dx\]

\[\int x \cos^3 x\ dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×