Advertisements
Advertisements
प्रश्न
\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]
योग
उत्तर
\[\text{We have}, \]
\[I = \int\frac{x^2}{\sqrt{1 - x}} dx\]
\[\text{ Let, 1 - x = t}^2 \]
\[\text{Differentiating both sides we get}\]
\[ - \text{ dx = 2t dt}\]
\[\text{Now, integration becomes}, \]
\[I = - \int\frac{\left( 1 - t^2 \right)^2}{t} 2tdt\]
\[ = - 2\int \left( 1 - t^2 \right)^2 dt\]
\[ = - 2\int\left( 1 - 2 t^2 + t^4 \right) dt\]
\[ = - 2\left[ t - \frac{2 t^3}{3} + \frac{t^5}{5} \right] + C\]
\[ = \frac{- 2}{15}t\left[ 3 t^4 - 10 t^2 + 15 \right] + C\]
\[ = \frac{- 2}{15}\sqrt{1 - x}\left[ 3 \left( 1 - x \right)^2 - 10\left( 1 - x \right) + 15 \right] + C\]
\[ = \frac{- 2}{15}\sqrt{1 - x}\left[ 3\left( 1 - 2x + x^2 \right) - 10\left( 1 - x \right) + 15 \right] + C\]
\[ = \frac{- 2}{15}\sqrt{1 - x}\left[ 3 x^2 - 6x + 3 - 10 + 10x + 15 \right] + C\]
\[ = \frac{- 2}{15}\sqrt{1 - x}\left[ 3 x^2 + 4x + 8 \right] + C\]
\[I = \int\frac{x^2}{\sqrt{1 - x}} dx\]
\[\text{ Let, 1 - x = t}^2 \]
\[\text{Differentiating both sides we get}\]
\[ - \text{ dx = 2t dt}\]
\[\text{Now, integration becomes}, \]
\[I = - \int\frac{\left( 1 - t^2 \right)^2}{t} 2tdt\]
\[ = - 2\int \left( 1 - t^2 \right)^2 dt\]
\[ = - 2\int\left( 1 - 2 t^2 + t^4 \right) dt\]
\[ = - 2\left[ t - \frac{2 t^3}{3} + \frac{t^5}{5} \right] + C\]
\[ = \frac{- 2}{15}t\left[ 3 t^4 - 10 t^2 + 15 \right] + C\]
\[ = \frac{- 2}{15}\sqrt{1 - x}\left[ 3 \left( 1 - x \right)^2 - 10\left( 1 - x \right) + 15 \right] + C\]
\[ = \frac{- 2}{15}\sqrt{1 - x}\left[ 3\left( 1 - 2x + x^2 \right) - 10\left( 1 - x \right) + 15 \right] + C\]
\[ = \frac{- 2}{15}\sqrt{1 - x}\left[ 3 x^2 - 6x + 3 - 10 + 10x + 15 \right] + C\]
\[ = \frac{- 2}{15}\sqrt{1 - x}\left[ 3 x^2 + 4x + 8 \right] + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int \left( 3x + 4 \right)^2 dx\]
\[\int\left( \sec^2 x + {cosec}^2 x \right) dx\]
\[\int \cos^{- 1} \left( \sin x \right) dx\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]
\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]
\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx }\]
\[\int\frac{dx}{e^x + e^{- x}}\]
\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]
\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]
\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]
\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]
\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx }\]
\[\int x^2 \cos 2x\ \text{ dx }\]
\[\int \left( \log x \right)^2 \cdot x\ dx\]
\[\int {cosec}^3 x\ dx\]
` ∫ x tan ^2 x dx
\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]
\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]
\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]
∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]
\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]
\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]
If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]
\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]
\[\int\frac{1}{4 x^2 + 4x + 5} dx\]
\[\int\frac{x + 1}{x^2 + 4x + 5} \text{ dx}\]
\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{ dx }\]
\[\int\frac{1}{a + b \tan x} \text{ dx }\]
\[\int \tan^5 x\ \sec^3 x\ dx\]
\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]
\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]