हिंदी

If ∫ Cos 8 X + 1 Tan 2 X − Cot 2 X D X (A) − 1 16 (B) 1 8 (C) 1 16 (D) − 1 8 - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]

विकल्प

  • \[- \frac{1}{16}\]

  • \[\frac{1}{8}\]

  • \[\frac{1}{16}\]

  • \[- \frac{1}{8}\]

MCQ

उत्तर

\[\frac{1}{16}\]

 

\[\text{If }\int\left( \frac{\cos 8x + 1}{\tan 2x - \cot 2x} \right)dx = a \cos 8x + C ............(1) \]
\[\text{Considering the LHS of eq. } (1)\]
\[\int\left( \frac{\cos 8x + 1}{\tan 2x - \cot 2x} \right)dx\]
\[ \Rightarrow \int\left( \frac{2 \cos^2 4x}{\frac{\sin 2x}{\cos 2x} - \frac{\cos 2x}{\sin 2x}} \right)dx\]
\[ \Rightarrow \int\frac{2 \cos^2 4x}{\left( \sin^2 2x - \cos^2 2x \right)} \times \sin 2x \cos 2x\]
\[ \Rightarrow \int\left[ \frac{- \cos^2 4x \times 2 \sin 2x \cdot \cos 2x}{\cos^2 2x - \sin^2 2x} \right]dx\]
\[ \Rightarrow \int\frac{- \cos^2 4x \times \sin 4x}{\cos 4x}dx ................\left( \because \cos 2x = \cos^2 x - \sin^2 x \right)\]
\[ \Rightarrow \frac{1}{2}\int - 2 \sin 4x \cos 4x dx \]
\[ \Rightarrow \frac{- 1}{2}\int\sin 8x dx\]
\[ \Rightarrow - \frac{1}{2}\left[ \frac{- \cos 8x}{8} \right] + C\]
\[ = \frac{1}{16}\left[ \cos 8x \right] + C ...............(2) \]
\[\text{Comparing RHS of eq. (1) with the eq. } (2)\]
\[ \therefore a = \frac{1}{16}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - MCQ [पृष्ठ २००]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
MCQ | Q 7 | पृष्ठ २००

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


\[\int\frac{\cos^7 x}{\sin x} dx\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×