हिंदी

∫ 1 X 2 ( X 4 + 1 ) 3 / 4 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]
योग

उत्तर

\[\int\frac{dx}{x^2 \left( x^4 + 1 \right)^\frac{3}{4}}\]
\[ = \int\frac{dx}{x^2 \left[ x^4 \left( 1 + \frac{1}{x^4} \right) \right]^\frac{3}{4}}\]
\[ = \int \frac{dx}{x^2 . x^3 \left( 1 + \frac{1}{x^4} \right)^\frac{3}{4}}\]
\[ = \int\frac{\left( 1 + \frac{1}{x^4} \right)^{- \frac{3}{4}}}{x^5}  \text{ dx }\]
\[\text{Let 1 }+ \frac{1}{x^4} = t\]
\[ \Rightarrow - \frac{4}{x^5}dx = \text{ dt }\]
\[ \Rightarrow \frac{dx}{x^5} = - \frac{dt}{4}\]
\[Now, \int\frac{\left( 1 + \frac{1}{x^4} \right)^{- \frac{3}{4}}}{x^5}\text{ dx }\]
\[ = - \frac{1}{4} \int t^{- \frac{3}{4}} \text{ dt }\]
\[ = - \frac{1}{4} \left[ \frac{t^{- \frac{3}{4} + 1}}{- \frac{3}{4} + 1} \right] + C\]
\[ = - t^\frac{1}{4} + C\]
\[ = - \left( 1 + \frac{1}{x^4} \right)^\frac{1}{4} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.09 [पृष्ठ ५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.09 | Q 71 | पृष्ठ ५९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int \cos^2 \text{nx dx}\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int \sec^4 2x \text{ dx }\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int x^2 \sin^2 x\ dx\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×