मराठी

∫ 1 X 2 ( X 4 + 1 ) 3 / 4 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]
बेरीज

उत्तर

\[\int\frac{dx}{x^2 \left( x^4 + 1 \right)^\frac{3}{4}}\]
\[ = \int\frac{dx}{x^2 \left[ x^4 \left( 1 + \frac{1}{x^4} \right) \right]^\frac{3}{4}}\]
\[ = \int \frac{dx}{x^2 . x^3 \left( 1 + \frac{1}{x^4} \right)^\frac{3}{4}}\]
\[ = \int\frac{\left( 1 + \frac{1}{x^4} \right)^{- \frac{3}{4}}}{x^5}  \text{ dx }\]
\[\text{Let 1 }+ \frac{1}{x^4} = t\]
\[ \Rightarrow - \frac{4}{x^5}dx = \text{ dt }\]
\[ \Rightarrow \frac{dx}{x^5} = - \frac{dt}{4}\]
\[Now, \int\frac{\left( 1 + \frac{1}{x^4} \right)^{- \frac{3}{4}}}{x^5}\text{ dx }\]
\[ = - \frac{1}{4} \int t^{- \frac{3}{4}} \text{ dt }\]
\[ = - \frac{1}{4} \left[ \frac{t^{- \frac{3}{4} + 1}}{- \frac{3}{4} + 1} \right] + C\]
\[ = - t^\frac{1}{4} + C\]
\[ = - \left( 1 + \frac{1}{x^4} \right)^\frac{1}{4} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.09 [पृष्ठ ५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.09 | Q 71 | पृष्ठ ५९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×