मराठी

∫ ( 2 X + 3 ) √ 4 X 2 + 5 X + 6 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]
बेरीज

उत्तर

\[ \text{ Let I} = \int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]
\[\text{ let 2x + 3 = A}\frac{d}{dx}\left( 4 x^2 + 5x + 6 \right) + B\]
\[ \Rightarrow 2x + 3 = A \left( 8x + 5 \right) + B . . . (1)\]
\[\text{By equating coefficients of like terms we get}, \]
\[\text{ 2x = 8A x }\]
\[ \Rightarrow A = \frac{1}{4}\]
\[ \text{ and  5A + B = 3}\]
\[ \Rightarrow \frac{5}{4} + B = 3\]
\[ \Rightarrow B = 3 - \frac{5}{4}\]
\[ = \frac{7}{4}\]
\[\text{Thus, by substituting the values of A and B in eq (1) we ge}t\]
\[I = \int \left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]
\[ = \int\left[ \frac{1}{4}\left( 8x + 5 \right) + \frac{7}{4} \right] \sqrt{4 x^2 + 5x + 6} \text{ dx}\]
\[ = \frac{1}{4}\int\left( 8x + 5 \right) \sqrt{4 x^2 + 5x + 6} dx + \frac{7}{4} \int\sqrt{4 x^2 + 5x + 6} \text{ dx}\]
\[Putting\ 4 x^2 + 5x + 6 = \text{    t   in the first integral}\]
\[ \Rightarrow \left( 8x + 5 \right) \text{ dx}= dt\]
\[ \therefore I = \frac{1}{4}\int\sqrt{t} \cdot dt + \frac{7 \times 2}{4}\int\sqrt{x^2 + \frac{5x}{4} + \frac{3}{2}} \text{ dx}\]
\[ = \frac{1}{4}\int t^\frac{1}{2} \cdot dt + \frac{7}{2}\int\sqrt{x^2 - \frac{5x}{4} + \left( \frac{5}{8} \right)^2 - \left( \frac{5}{8} \right)^2 + \frac{3}{2}} \text{ dx}\]
\[ = \frac{1}{4} \left[ \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + \frac{7}{2}\int\sqrt{\left( x + \frac{5}{8} \right)^2 - \frac{25}{64} + \frac{3}{2}} \text{ dx}\]
\[ = \frac{1}{4} \times \frac{2}{3} t^\frac{3}{2} + \frac{7}{2}\int\sqrt{\left( x + \frac{5}{8} \right)^2 + \frac{- 25 + 96}{64}}\]
\[ = \frac{1}{6} t^\frac{3}{2} + \frac{7}{2}\int\sqrt{\left( x + \frac{5}{8} \right)^2 + \left( \frac{\sqrt{71}}{8} \right)^2}\]
\[ = \frac{1}{6} \left( 4 x^2 + 5x + 6 \right)^\frac{3}{2} + \frac{7}{2}\left[ \frac{x + \frac{5}{8}}{2}\sqrt{\left( x + \frac{5}{8} \right)^2 + \left( \frac{\sqrt{71}}{8} \right)^2} + \frac{71}{64 \times 2} \text{ ln} \left| x + \frac{5}{8} + \sqrt{\left( x + \frac{5}{8} \right)^2 + \left( \frac{\sqrt{71}}{8} \right)^2} \right| \right] + C ................\left[ \because \int\sqrt{a^2 + x^2} \text{ dx}= \frac{1}{2}x\sqrt{a^2 + x^2} + \frac{1}{2} a^2 \text{ ln}\left| x + \sqrt{x^2 + a^2} \right| + C \right]\]
\[ = \frac{1}{6} \left( 4 x^2 + 5x + 6 \right)^\frac{3}{2} + \frac{7}{2} \frac{\left( 8x + 5 \right)}{16} \sqrt{x^2 + \frac{5}{4}x + \frac{3}{2}} + \frac{71 \times 7}{2 \times 128} \text{ ln} \left| x + \frac{5}{8} + \sqrt{x^2 + \frac{5}{4}x + \frac{3}{2}} \right| + C\]
\[ = \frac{1}{6} \left( 4 x^2 + 5x + 6 \right)^\frac{3}{2} + \frac{7 \times 2 \left( 8x + 5 \right)}{4 \times 16} \sqrt{x^2 + \frac{5}{4}x + \frac{3}{2}} + \frac{497}{256} \text{ ln} \left| x + \frac{5}{8} + \sqrt{x^2 + \frac{5}{4}x + \frac{3}{2}} \right| + C\]
\[ = \frac{1}{6} \left( 4 x^2 + 5x + 6 \right) \sqrt{4 x^2 + 5x + 6} + \frac{7}{64} \left( 8x + 5 \right) \sqrt{4 x^2 + 5x + 6} + \frac{497}{256} \text{ ln }\left| x + \frac{5}{6} + \sqrt{x^2 + \frac{5}{4}x + \frac{3}{2}} \right| + C\]
\[ = \sqrt{4 x^2 + 5x + 6} \left[ \frac{4 x^2 + 5x + 6}{6} + \frac{7}{64} \left( 8x + 5 \right) \right] + \frac{497}{256} \text{ ln} \left| x + \frac{5}{8} + \sqrt{x^2 + \frac{5}{4}x + \frac{3}{2}} \right| + C\]
\[ = \sqrt{4 x^2 + 5x + 6} \left[ \frac{128 x^2 + 328x + 297}{192} \right] + \text{ ln} \left| x + \frac{5}{8} + \sqrt{x^2 + \frac{5}{4}x + \frac{3}{2}} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 90 | पृष्ठ २०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int \sin^5 x \text{ dx }\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int \sin^4 2x\ dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int \sec^4 x\ dx\]


\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int \sec^6 x\ dx\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×