Advertisements
Advertisements
प्रश्न
उत्तर
∫ sin4 x cos3 x dx
= ∫ sin4 x . cos2 x cos x dx
= ∫ sin4 x . (1 – sin2 x ) cos x dx
Let sin x = t
⇒ cos x dx = dt
Now, ∫ sin4 x . (1 – sin2 x ) cos x dx
= ∫ t4 (1 – t2) dt
= ∫ (t4 – t6) dt
\[= \frac{t^5}{5} - \frac{t^7}{7} + C\]
\[ = \frac{\sin^5 x}{5} - \frac{\sin^7 x}{7} + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
` ∫ 1/ {1+ cos 3x} ` dx
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int\text{ cos x cos 2x cos 3x dx}\]
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]
Find: `int (3x +5)/(x^2+3x-18)dx.`