Advertisements
Advertisements
प्रश्न
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
बेरीज
उत्तर
\[\text{ Let I } = \int\frac{1}{\sin^2 x + \sin 2x}dx\]
\[ = \int\frac{1}{\sin^2 x + 2 \sin x \cdot \cos x}dx\]
Dividing numerator and denominator by cos2x, we get
\[I = \int\frac{\frac{1}{\cos^2 x}}{\tan^2 x + 2 \tan x}dx\]
\[ = \int\frac{\sec^2 x}{\tan^2 x + 2 \tan x} dx\]
\[\text{ Putting tan x = t}\]
\[ \Rightarrow \text{ sec}^2 \text{ x dx = dt }\]
\[ \therefore I = \int\frac{1}{t^2 + 2t}dt\]
\[ = \int\frac{1}{t^2 + 2t + 1 - 1}dt\]
\[ = \int\frac{1}{\left( t + 1 \right)^2 - 1^2}dt\]
\[ = \frac{1}{2} \text{ ln} \left| \frac{t + 1 - 1}{t + 1 + 1} \right| + C\]
\[ = \frac{1}{2} \text{ ln } \left| \frac{t}{t + 2} \right| + C \]
\[ = \frac{1}{2} \text{ ln} \left| \frac{\tan x}{\tan x + 2} \right| + C ............\left[ \because t = \tan x \right]\]
\[ = \int\frac{\sec^2 x}{\tan^2 x + 2 \tan x} dx\]
\[\text{ Putting tan x = t}\]
\[ \Rightarrow \text{ sec}^2 \text{ x dx = dt }\]
\[ \therefore I = \int\frac{1}{t^2 + 2t}dt\]
\[ = \int\frac{1}{t^2 + 2t + 1 - 1}dt\]
\[ = \int\frac{1}{\left( t + 1 \right)^2 - 1^2}dt\]
\[ = \frac{1}{2} \text{ ln} \left| \frac{t + 1 - 1}{t + 1 + 1} \right| + C\]
\[ = \frac{1}{2} \text{ ln } \left| \frac{t}{t + 2} \right| + C \]
\[ = \frac{1}{2} \text{ ln} \left| \frac{\tan x}{\tan x + 2} \right| + C ............\left[ \because t = \tan x \right]\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]
\[\int\frac{x^2 + x + 5}{3x + 2} dx\]
\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]
\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]
\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]
\[\int\sqrt{1 + e^x} . e^x dx\]
\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]
\[\int \tan^3 \text{2x sec 2x dx}\]
\[\ \int\ x \left( 1 - x \right)^{23} dx\]
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
` ∫ tan x sec^4 x dx `
\[\int \sin^3 x \cos^5 x \text{ dx }\]
\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]
\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]
\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]
\[\int\frac{x}{\sqrt{4 - x^4}} dx\]
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]
\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]
\[\int\frac{\log x}{x^n}\text{ dx }\]
` ∫ sin x log (\text{ cos x ) } dx `
\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]
\[\int e^x \left( \cot x + \log \sin x \right) dx\]
\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]
\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]
\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]
\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]
Write a value of
\[\int e^{3 \text{ log x}} x^4\text{ dx}\]
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\]
\[\int \sec^2 x \cos^2 2x \text{ dx }\]
\[\int x\sqrt{2x + 3} \text{ dx }\]
\[\int x \sin^5 x^2 \cos x^2 dx\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]
\[\int\sqrt{a^2 + x^2} \text{ dx }\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]
\[\int \left( \sin^{- 1} x \right)^3 dx\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]