मराठी

∫ Sin − 1 √ X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I }= \int \sin^{- 1} \sqrt{x} dx\]
\[ = \int \frac{\sqrt{x} . \sin^{- 1} \sqrt{x}}{\sqrt{x}}dx\]
\[\text{ Let} \sqrt{x} = t\]
\[ \Rightarrow \frac{1}{2\sqrt{x}}dx = dt\]
\[ \Rightarrow \frac{dx}{\sqrt{x}} = 2dt\]
\[ \therefore I = \int t_{II} . \sin^{- 1} t_I dt\]
\[ = \sin^{- 1} t\int t\ dt - \int\left\{ \frac{d}{dt}\left( \sin^{- 1} t \right)\int t\ dt \right\}dt\]
\[ = 2 \left[ \sin^{- 1} t . \frac{t^2}{2} - \int \frac{1}{\sqrt{1 - t^2}} \times \frac{t^2}{2}dt \right]\]
\[ = \sin^{- 1} t . t^2 - \int \frac{t^2}{\sqrt{1 - t^2}}dt\]
\[ = \sin^{- 1} t . t^2 + \int\left( \frac{1 - t^2 - 1}{\sqrt{1 - t^2}} \right)dt\]
\[ = \sin^{- 1} t . t^2 + \int \sqrt{1 - t^2} dt - \int \frac{dt}{\sqrt{1 - t^2}}\]
\[ = \sin^{- 1} t . t^2 + \frac{t}{2}\sqrt{1 - t^2} + \frac{1}{2} \sin^{- 1} t - \sin^{- 1} t + C\]
\[ = \sin^{- 1} t . t^2 + \frac{t}{2}\sqrt{1 - t^2} - \frac{1}{2} \sin^{- 1} t + C\]
\[ = x . \sin^{- 1} \sqrt{x} + \frac{\sqrt{x}}{2} \sqrt{1 - x} - \frac{1}{2} \sin^{- 1} \left( \sqrt{x} \right) + C \left( \because \sqrt{x} = t \right)\]
\[ = \frac{\left( 2x - 1 \right) \sin^{- 1} \sqrt{x}}{2} + \frac{\sqrt{x - x^2}}{2} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 31 | पृष्ठ १३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

`  ∫  sin 4x cos  7x  dx  `

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

` ∫  tan^5 x   sec ^4 x   dx `

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

 
` ∫  x tan ^2 x dx 

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int \sin^4 2x\ dx\]

\[\int \cos^3 (3x)\ dx\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int \cot^5 x\ dx\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×