मराठी

∫ Sin X − Cos X √ Sin 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]
बेरीज

उत्तर

\[\int\left( \frac{\sin x - \cos x}{\sqrt{\sin 2x}} \right) dx\]
\[ = \int\left( \frac{\sin x - \cos x}{\sqrt{1 + \sin 2x - 1}} \right)dx\]
\[ = \int\frac{\left( \sin x - \cos x \right)}{\sqrt{\sin^2 x + \cos^2 x + 2 \sin x \cos x - 1}}dx\]
\[ = \int\frac{\left( \sin x - \cos x \right)}{\sqrt{\left( \sin x + \cos x \right)^2 - 1}}dx\]
\[\text{ let }\sin x + \cos x = t\]
\[ \Rightarrow \left( \cos x - \sin x \right) dx = dt\]
\[ \Rightarrow \left( \sin x - \cos x \right)dx = - dt\]
\[Now, \int\frac{\left( \sin x - \cos x \right)}{\sqrt{\left( \ sin x + \cos x \right)^2 - 1}}dx\]
\[ = - \int\frac{dt}{\sqrt{t^2 - 1^2}}\]
\[ = - \text{ log }\left| t + \sqrt{t^2 - 1} \right| + C\]
\[ = - \text{ log }\left| \sin x + \cos x + \sqrt{\left( \sin x + \cos x \right)^2 - 1} \right| + C\]
\[ = - \text{ log }\left| \sin x + \cos x + \sqrt{\sin^2 x + \cos^2 x + 2\sin  x . \cos x - 1} \right| + C\]
\[ = - \text{ log } \left| \sin x + \cos x + \sqrt{\sin 2x} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.18 [पृष्ठ ९९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.18 | Q 17 | पृष्ठ ९९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

` ∫  sec^6   x  tan    x   dx `

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int x \text{ sin 2x dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int \cot^5 x\ dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×