Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\left( \frac{\sin x - \cos x}{\sqrt{\sin 2x}} \right) dx\]
\[ = \int\left( \frac{\sin x - \cos x}{\sqrt{1 + \sin 2x - 1}} \right)dx\]
\[ = \int\frac{\left( \sin x - \cos x \right)}{\sqrt{\sin^2 x + \cos^2 x + 2 \sin x \cos x - 1}}dx\]
\[ = \int\frac{\left( \sin x - \cos x \right)}{\sqrt{\left( \sin x + \cos x \right)^2 - 1}}dx\]
\[\text{ let }\sin x + \cos x = t\]
\[ \Rightarrow \left( \cos x - \sin x \right) dx = dt\]
\[ \Rightarrow \left( \sin x - \cos x \right)dx = - dt\]
\[Now, \int\frac{\left( \sin x - \cos x \right)}{\sqrt{\left( \ sin x + \cos x \right)^2 - 1}}dx\]
\[ = - \int\frac{dt}{\sqrt{t^2 - 1^2}}\]
\[ = - \text{ log }\left| t + \sqrt{t^2 - 1} \right| + C\]
\[ = - \text{ log }\left| \sin x + \cos x + \sqrt{\left( \sin x + \cos x \right)^2 - 1} \right| + C\]
\[ = - \text{ log }\left| \sin x + \cos x + \sqrt{\sin^2 x + \cos^2 x + 2\sin x . \cos x - 1} \right| + C\]
\[ = - \text{ log } \left| \sin x + \cos x + \sqrt{\sin 2x} \right| + C\]
APPEARS IN
संबंधित प्रश्न
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
Find: `int (3x +5)/(x^2+3x-18)dx.`