मराठी

∫ ( E ( Log X ) + Sin X ) Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]

बेरीज

उत्तर

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]
\[ = \int \left( x + \sin x \right)\cos x dx \left( \because e^(log x = x \right)\]
\[ = \int \left( x \cos x + \sin x \cos x \right) dx\]
\[ = \int x \text{ cos x dx }+ \frac{1}{2}\int 2 \sin x \text{ cos x dx }\]
\[ = \int x_I \text{ cos}_{II} \text{    x  dx }+ \frac{1}{2} \int\text{ sin 2x dx }\]
\[ = \left[ x\int\text{ cos x dx }- \int\left\{ \frac{d}{dx}\left( x \right)\int\text
{ cos  x  dx } \right\}dx \right] + \frac{1}{2} \int\text{ sin  2x  dx }\]
\[ = x \sin x - \int1 . \text{ sin  x  dx} + \frac{1}{2}\left[ \frac{- \cos 2x}{2} \right] + C\]
\[ = x \sin x - \left( - \cos x \right) - \frac{1}{4}\cos 2x + C\]
\[ = x \sin x + \cos x - \frac{1}{4}\left( 1 - 2 \sin^2 x \right) + C\]
\[ = x \sin x + \cos x + \frac{\sin^2 x}{2} - \frac{1}{4} + C\]
\[ = x \sin x + \cos x + \frac{\sin^2 x}{2} + C'   \text{  where C' = C }- \frac{1}{4}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 46 | पृष्ठ १३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int {cosec}^4 2x\ dx\]


\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×