Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I } = \int\frac{x + 2}{\sqrt{x^2 - 1}}dx\]
\[ = \int\frac{x}{\sqrt{x^2 - 1}}dx + 2\int\frac{dx}{\sqrt{x^2 - 1}}\]
\[\text{ let x }^2 - 1 = t\]
\[ \Rightarrow \text{ 2x dx }= dt\]
\[ \Rightarrow\text{ x dx } = \frac{dt}{2}\]
\[\text{ Then }, \]
\[I = \frac{1}{2}\int\frac{dt}{\sqrt{t}} + 2\int\frac{dx}{\sqrt{x^2 - 1^2}}\]
\[ = \frac{1}{2}\int t^{- \frac{1}{2}} dt + 2\int\frac{dx}{\sqrt{x^2 - 1^2}}\]
\[ = \frac{1}{2} \left[ \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + 2 \log \left| x + \sqrt{x^2 - 1} \right| + C\]
\[ = \sqrt{t} + 2 \text{ log }\left| x + \sqrt{x^2 - 1} \right| + C\]
\[ = \sqrt{x^2 - 1} + 2 \text{ log } \left| x + \sqrt{x^2 - 1} \right| + C\]
APPEARS IN
संबंधित प्रश्न
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]