मराठी

∫ X + 1 X 2 + 4 X + 5 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]
बेरीज

उत्तर

\[\text{ Let  I } = \int\frac{\left( x + 1 \right)}{x^2 + 4x + 5}dx\]

\[\text{ and   let} \left( x + 1 \right) = A\frac{d}{dx}\left( x^2 + 4x + 5 \right) + B\]

\[ \Rightarrow x + 1 = A \left( 2x + 4 \right) + B\]

\[ \Rightarrow x + 1 = \left( 2A \right)x + 4A + B\]

\[\text{Equating the coefficients of like terms}\]

\[2A = 1\]

\[ \Rightarrow A = \frac{1}{2}\]

\[\text{ and }\ 4A + B = 1\]

\[ \Rightarrow 4 \times \frac{1}{2} + B = 1\]

\[ \Rightarrow B = - 1\]

\[ \therefore \left( x + 1 \right) = \frac{1}{2} \left( 2x + 4 \right) - 1\]

\[ \therefore I = \int\left[ \frac{\frac{1}{2}\left( 2x + 4 \right) - 1}{x^2 + 4x + 5} \right]dx\]

\[ = \frac{1}{2}\int\frac{\left( 2x + 4 \right)}{x^2 + 4x + 5}dx - \int\frac{1}{x^2 + 4x + 5}dx\]

\[\text{ Putting  x}^2 + 4x + 5 = t\]

\[ \Rightarrow \left( 2x + 4 \right) dx = dt\]

\[ \therefore I = \frac{1}{2}\int\frac{1}{t}dt - \int\frac{1}{x^2 + 4x + 4 + 1}dx\]

\[ = \frac{1}{2}\int\frac{dt}{t} - \int\frac{1}{\left( x + 2 \right)^2 + 1^2}dx \]

\[ = \frac{1}{2} \text{ ln } \left| t \right| - \tan^{- 1} \left( \frac{x + 2}{1} \right) + C............. \left[ \because \int\frac{1}{x^2 + a^2}dx = \frac{1}{a} \tan^{- 1} \frac{x}{a} + C \right]\]

\[ = \frac{1}{2} \text{ ln }\left| x^2 + 4x + 5 \right| - \tan^{- 1} \left( x + 2 \right) + C ...................\left[ \because t = x^2 + 4x + 5 \right]\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 51 | पृष्ठ २०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x \text{ sin 2x dx }\]

\[\int\cos\sqrt{x}\ dx\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int x \sin^3 x\ dx\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×