मराठी

∫ Sin − 1 √ X a + X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]
बेरीज

उत्तर

\[\text{We have}, \]

\[I = \int \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]

\[\text{ Putting x }= a \tan^2 \theta \Rightarrow \tan \theta = \sqrt{\frac{x}{a}}\]

\[ \Rightarrow dx = a\left( 2 \tan \theta \right) \sec^2 \ \text{  θ  dθ}\]

\[ \therefore I = \int \sin^{- 1} \sqrt{\frac{a \tan^2 \theta}{a + a \tan^2 \theta}} \left( 2a \tan \theta \sec^2 \theta \right)d\theta\]

\[ = \int \sin^{- 1} \sqrt{\frac{\tan^2 \theta}{\sec^2 \theta}} \left( 2a \tan \theta \sec^2 \theta \right) d\theta\]

\[ = 2a \int \sin^{- 1} \left( \sin \theta \right) \tan \theta \sec^2 \text{  θ  dθ}\]

\[ = 2a \int \theta \tan \theta \sec^2 \text{  θ  dθ}\]

\[\text{Considering  θ as first function and  tan   θ  sec}^2 \text{  θ  as second function}\]

\[I = 2a \left[ \theta\frac{\tan^2 \theta}{2} - \int1\frac{\tan^2 \theta}{2}d\theta \right]\]

\[ = a\left[ \theta \tan^2 \theta - \int\left( \sec^2 \theta - 1 \right)d\theta \right]\]

\[ = a\left[ \theta \tan^2 \theta - \tan \theta + \theta \right] + C\]

\[ = a\left[ \theta \times \left( 1 + \tan^2 \theta \right) - \tan \theta \right] + C\]

\[ = a\left[ \tan^{- 1} \left( \frac{\sqrt{x}}{\sqrt{a}} \right) \left( 1 + \frac{x}{a} \right) - \frac{\sqrt{x}}{\sqrt{a}} \right] + C\]

\[ = \left( x + a \right) \tan^{- 1} \left( \frac{\sqrt{x}}{\sqrt{a}} \right) - \sqrt{ax} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 113 | पृष्ठ २०५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\frac{1}{1 - \cos x} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int x \sin x \cos x\ dx\]

 


\[\int\cos\sqrt{x}\ dx\]

 
` ∫  x tan ^2 x dx 

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int x \sin^3 x\ dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×