मराठी

∫ 1 5 + 4 Cos X D X∫ 1 5 + 4 Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{5 + 4 \cos x} dx\]
बेरीज

उत्तर

\[Let I = \int \frac{1}{5 + 4 \cos x}dx\]
\[Putting\ \cos x = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ I = \int \frac{1}{5 + 4\left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)}dx\]
\[ = \int \frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{5 \left( 1 + \tan^2 \frac{x}{2} \right) + 4\left( 1 - \tan^2 \frac{x}{2} \right)}dx\]
\[ = \int \frac{\sec^2 \frac{x}{2} dx}{5 + 5 \tan^2 \frac{x}{2} + 4 - 4 \tan^2 \frac{x}{2}}\]
\[ = \int \frac{\sec^2 \left( \frac{x}{2} \right) dx}{\tan^2 \left( \frac{x}{2} \right) + 9}\]
\[Let \tan \left( \frac{x}{2} \right) = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \left( \frac{x}{2} \right)dx = dt\]
\[ \Rightarrow \sec^2 \left( \frac{x}{2} \right)dx = 2dt\]
\[ \therefore I = 2 \int \frac{dt}{t^2 + 3^2}\]
\[ = \frac{2}{3} \tan^{- 1} \left( \frac{t}{3} \right) + C\]
\[ = \frac{2}{3} \tan^{- 1} \left( \frac{\tan \left( \frac{x}{2} \right)}{3} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.23 [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.23 | Q 1 | पृष्ठ ११७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

` ∫      tan^5    x   dx `


\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×