मराठी

∫ Sin ( X − α ) Sin ( X + α ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]
बेरीज

उत्तर

\[\text{Let I }= \int\frac{\sin\left( x - \alpha \right)}{\sin\left( x + \alpha \right)}dx\]

\[\text{Putting x} + \alpha = t \]

\[ \Rightarrow x = t - \alpha\]

\[\text{and}\ dx = dt\]

\[ \therefore I = \int\frac{\sin \left( t - 2\alpha \right)}{\sin t}dt\]

\[ = \int\left( \frac{\sin t \cos 2\alpha}{\sin t} - \frac{\cos t \sin 2\alpha}{\sin t} \right)dt\]

\[ = \cos 2\alpha\  ∫ dt - \sin 2\alpha\int\text{cot t dt}\]

\[ = t\cos 2\alpha - \text{sin 2}\alpha \text{ln }\left| \sin t \right| + C\]

\[ = \left( x + \alpha \right)\text{cos 2}\alpha - \text{sin 2}\alpha \text{ln }\left| \sin \left( x + \alpha \right) \right| + C \left[ \because t = x + \alpha \right]\]

\[ = x\cos 2\alpha - \text{sin 2}\alpha \text{ln }\left| \sin \left( x + \alpha \right) \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.08 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.08 | Q 8 | पृष्ठ ४७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int \cot^6 x \text{ dx }\]

\[\int \cos^5 x \text{ dx }\]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int x \cos^3 x\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int \sec^4 x\ dx\]


\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int x \sec^2 2x\ dx\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×