हिंदी

∫ Sin ( X − α ) Sin ( X + α ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]
योग

उत्तर

\[\text{Let I }= \int\frac{\sin\left( x - \alpha \right)}{\sin\left( x + \alpha \right)}dx\]

\[\text{Putting x} + \alpha = t \]

\[ \Rightarrow x = t - \alpha\]

\[\text{and}\ dx = dt\]

\[ \therefore I = \int\frac{\sin \left( t - 2\alpha \right)}{\sin t}dt\]

\[ = \int\left( \frac{\sin t \cos 2\alpha}{\sin t} - \frac{\cos t \sin 2\alpha}{\sin t} \right)dt\]

\[ = \cos 2\alpha\  ∫ dt - \sin 2\alpha\int\text{cot t dt}\]

\[ = t\cos 2\alpha - \text{sin 2}\alpha \text{ln }\left| \sin t \right| + C\]

\[ = \left( x + \alpha \right)\text{cos 2}\alpha - \text{sin 2}\alpha \text{ln }\left| \sin \left( x + \alpha \right) \right| + C \left[ \because t = x + \alpha \right]\]

\[ = x\cos 2\alpha - \text{sin 2}\alpha \text{ln }\left| \sin \left( x + \alpha \right) \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.08 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.08 | Q 8 | पृष्ठ ४७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{1}{1 - \sin x} dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int \sin^2\text{ b x dx}\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int x^3 \sin x^4 dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

 
` ∫  x tan ^2 x dx 

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×