Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Let I} = \int\left( \frac{1 + \ tanx}{1 - \ tanx} \right)dx\]
\[ = \int\left( \frac{1 + \frac{\sin x}{\cos x}}{1 - \frac{\sin x}{\cos x}} \right)dx\]
\[ = \int\left( \frac{\cos x + \sin x}{\cos x - \sin x} \right)dx\]
\[Putting\ \cos\ x - \sin x = t\]
\[ \Rightarrow \left( - \sin x - \cos x \right)dx = dt\]
\[ \Rightarrow \left( \sin x + \cos x \right)dx = - dt\]
\[ \therefore I = - \int\frac{1}{t}dt\]
\[ = - \text{ln }\left| t \right| + C\]
\[ = - \text{ln }\left| \cos x - \sin x \right| + C \left[ \because t = \cos x - \sin x \right]\]
APPEARS IN
संबंधित प्रश्न
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`