हिंदी

Evaluate the Following Integrals: ∫ √ 1 + X 2 X 4 D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]
योग

उत्तर

\[\text{ Let I } = \int\frac{\sqrt{1 + x^2}}{x^4}dx\]

\[ \text{Let x} = \tan\theta\]

\[ \text{On differentiating both sides, we get}\]

` dx = sec^2  θ   dθ `

\[ \therefore I = \int\frac{\sqrt{1 + \tan^2 \theta}}{\tan^4 \theta} \sec^2 \theta d\theta\]

\[ = \int\frac{\sec^3 \theta}{\tan^4 \theta}d\theta\]

\[ = \int\frac{\cos\theta}{\sin^4 \theta}d\theta\]

` = ∫ cot  θ   "cosec"^3 θ  dθ `

` Let   "cosec"^3θ = t` 

\[ \text{On differentiating both sides, we get}\]

`  - 3 \text{ cosec}^3 θ    cot θ  dθ = dt `

\[ \therefore I = - \frac{1}{3}\int\cotθ \text{ cosec }^3 \theta \frac{dt}{{cosec}^3 \theta \cot\theta}\]

\[ = - \frac{t}{3} + c\]

\[ = - \frac{1}{3}\left( {cosec}^3 \theta \right) + c\]

\[ = - \frac{1}{3} \left( cosec\left( \tan^{- 1} x \right) \right)^3 + c\]

\[ = - \frac{1}{3} \left( cosec\left( {cosec}^{- 1} \frac{\sqrt{1 + x^2}}{x} \right) \right)^3 + c\]

\[ = - \frac{1}{3} \left( \frac{\sqrt{1 + x^2}}{x} \right)^3 + c\]

\[Hence, \int\frac{\sqrt{1 + x^2}}{x^4}dx = - \frac{1}{3} \left( \frac{\sqrt{1 + x^2}}{x} \right)^3 + c\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.13 [पृष्ठ ७९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.13 | Q 4 | पृष्ठ ७९

संबंधित प्रश्न

Evaluate : `int_0^3dx/(9+x^2)`


Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`


\[\int\frac{\cos 2x}{\left( \cos x + \sin x \right)^2} dx\]

\[\int\frac{1}{x \log x} dx\]

\[\int\frac{1}{e^x + 1} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{10 x^9 + {10}^x \log_e 10}{{10}^x + x^{10}} dx\]

\[\int\frac{1}{\cos 3x - \cos x} dx\]

 ` ∫       cot^3   x  "cosec"^2   x   dx `


\[\int\frac{1 + \sin x}{\sqrt{x - \cos x}} dx\]

\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]


\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]


Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 


`  ∫    {1} / {cos x  + "cosec x" } dx  `

\[\int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]

Evaluate the following integrals: 

\[\int\frac{x + 2}{\sqrt{x^2 + 2x + 3}} \text{ dx }\]

\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int e^{2x} \left( \frac{1 - \sin2x}{1 - \cos2x} \right)dx\]

\[\int e^{2x} \text{ sin x cos x dx }\]

Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]

\[\int(3x + 1) \sqrt{4 - 3x - 2 x^2} \text{  dx }\]

\[\int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx,\text{ where a, b, c are distinct}\]

Evaluate the following integral :-

\[\int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx\]

Evaluate the following integral:

\[\int\frac{1}{x\left( x^3 + 8 \right)}dx\]

 


\[\int\frac{\cos x}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 - x^2 + 1} \text{ dx }\]

Write a value of

\[\int\frac{\left( \log x \right)^n}{x} \text{ dx }\]

Evaluate:

\[\int\frac{x^2 + 4x}{x^3 + 6 x^2 + 5} \text{ dx }\]

Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate:

\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]


Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int ("d"x)/sqrt(16 - 9x^2)`


Evaluate the following:

`int sqrt(2"a"x - x^2)  "d"x`


Evaluate the following:

`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×