Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Let I} = \int\frac{\cos 2x}{\left( \text{cos x }+ \text{sin x} \right)^2}dx\]
\[ = \int\frac{\cos^2 x - \sin^2 x}{\left( \text{cos x }+ \text{sin x} \right)^2}dx\]
\[ = \int\frac{\cos x - \ sin x}{\cos x + \sin x}dx\]
\[\text{Putting }\cos x + \sin x = t \]
\[ \Rightarrow - \text{sin x} + \text{cos x} = \frac{dt}{dx}\]
\[ \Rightarrow \left( \text{cos x}- \text{sin x} \right)dx = dt\]
\[ \therefore I = \int\frac{1}{t}dt\]
\[ = \text{ln }\left| t \right| + C\]
`= In | cos x + sin x |` + C ` [ ∵ t= cos x + sin x] `
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^3dx/(9+x^2)`
` ∫ cot^3 x "cosec"^2 x dx `
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate:
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)