Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[\text{Let }I = \int\frac{1}{x\left( x^3 + 8 \right)}dx\]
We express
\[\frac{1}{x\left( x^3 + 8 \right)} = = \frac{A}{x} + \frac{B x^2 + Cx + D}{x^3 + 8}\]
\[ \Rightarrow 1 = A\left( x^3 + 8 \right) + \left( B x^2 + Cx + D \right)\left( x \right)\]
Equating the coefficients of `x^3 , x^2 , x` and constants, we get
\[0 = A + B\text{ and }0 = C\text{ and }0 = D\text{ and }1 = 8A\]
\[\text{or }A = \frac{1}{8}\text{ and }B = - \frac{1}{8}\text{ and }C = 0\text{ and }D = 0\]
\[ \therefore I = \int\left( \frac{\frac{1}{8}}{x} + \frac{- \frac{1}{8} x^2}{\left( x^3 + 8 \right)} \right)dx\]
\[ = \frac{1}{8}\int\frac{1}{x}dx - \frac{1}{24}\int\frac{3 x^2}{x^3 + 8} dx\]
\[ = \frac{1}{8}\log\left| x \right| - \frac{1}{24}\log\left| x^3 + 8 \right| + c\]
\[\text{Hence, }\int\frac{1}{x\left( x^3 + 8 \right)}dx = \frac{1}{8}\log\left| x \right| - \frac{1}{24}\log\left| x^3 + 8 \right| + c\]
APPEARS IN
संबंधित प्रश्न
` ∫ cot^3 x "cosec"^2 x dx `
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`