हिंदी

Evaluate the following integral: ∫x3+x+1x2−1dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]
योग

उत्तर

\[\text{Let }I = \int\frac{x^3 + x + 1}{x^2 - 1}dx\]
 
\[\text{Here the integrand }\frac{x^3 + x + 1}{x^2 - 1}\text{ is not a proper rational function, so we divide }x^3 + x + 1\text{ by }x^2 - 1\text{ and find that}\]
 
\[\frac{x^3 + x + 1}{x^2 - 1} = x + \frac{2x + 1}{x^2 - 1} = x + \frac{2x + 1}{\left( x + 1 \right)\left( x - 1 \right)}\]
 
\[\text{Let }\frac{2x + 1}{\left( x + 1 \right)\left( x - 1 \right)} = \frac{A}{x + 1} + \frac{B}{x - 1}\]
 
\[\Rightarrow 2x + 1 = A\left( x - 1 \right) + B\left( x + 1 \right)\]
 
Equating the coefficients of x and constants, we get
 
\[2 = A + B\text{ and }1 = - A + B\]
 
\[\text{or }A = \frac{1}{2}\text{ and }B = \frac{3}{2}\]
 
\[\therefore I = \int\left( x + \frac{\frac{1}{2}}{x + 1} + \frac{\frac{3}{2}}{x - 1} \right)dx\]
 
\[= \int x\ dx + \frac{1}{2}\int\frac{1}{x + 1}dx + \frac{3}{2}\int\frac{1}{x - 1} dx\]
 
\[= \frac{x^2}{2} + \frac{1}{2}\log\left| x + 1 \right| + \frac{3}{2}\log\left| x - 1 \right| + c\]
 
\[= \frac{x^2}{2} + \frac{1}{2}\log\left| x + 1 \right| + \frac{3}{2}\log\left| x - 1 \right| + c\]
 
\[\text{Hence, }\int\frac{x^3 + x + 1}{x^2 - 1}dx = \frac{x^2}{2} + \frac{1}{2}\log\left| x + 1 \right| + \frac{3}{2}\log\left| x - 1 \right| + c\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 26 | पृष्ठ १७७

संबंधित प्रश्न

Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`


\[\int\frac{x}{\sqrt{x + 4}} dx\]

\[\int\frac{1 + \tan x}{1 - \tan x} dx\]

\[\int\frac{1}{x \log x} dx\]

\[\int\frac{2 \cos x - 3 \sin x}{6 \cos x + 4 \sin x} dx\]

` ∫  {1+tan}/{ x + log  sec  x   dx} `

\[\int\frac{1}{\cos 3x - \cos x} dx\]

 ` ∫       cot^3   x  "cosec"^2   x   dx `


\[\int\frac{1 + \sin x}{\sqrt{x - \cos x}} dx\]

\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]

Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 


Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

\[\int\frac{x + 5}{3 x^2 + 13x - 10}\text{ dx }\]

\[\int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]

\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{\log x}{\left( x + 1 \right)^2}dx\]

 


Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]

\[\int(3x + 1) \sqrt{4 - 3x - 2 x^2} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 - x^2 - 12}dx\]

 


\[\int\frac{( x^2 + 1) ( x^2 + 4)}{( x^2 + 3) ( x^2 - 5)} dx\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]


Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate:

\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]


Evaluate: 

\[\int\frac{1}{\sin^2 x \cos^2 x}dx\]

Evaluate the following:

`int ("d"x)/sqrt(16 - 9x^2)`


Evaluate the following:

`int sqrt(2"a"x - x^2)  "d"x`


Evaluate the following:

`int ("d"x)/(xsqrt(x^4 - 1))`  (Hint: Put x2 = sec θ)


Evaluate the following:

`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×