हिंदी

Evaluate the Following Integral ; ∫ X ( X 2 + 1 ) ( X − 1 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integral :-

\[\int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx\]
योग

उत्तर

\[\text{Let }I = \int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx\]

We express

\[\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 + 1}\]

\[ \Rightarrow x = A\left( x^2 + 1 \right) + \left( Bx + C \right)\left( x - 1 \right)\]

Equating the coefficients of `x^2` , x and constants, we get

\[0 = A + B\text{ and }1 = - B + C\text{ and }0 = A - C\]

\[\text{or }A = \frac{1}{2}\text{ and }B = - \frac{1}{2}\text{ and }C = \frac{1}{2} \]

\[ \therefore I = \int\left( \frac{\frac{1}{2}}{x - 1} + \frac{- \frac{1}{2}x + \frac{1}{2}}{x^2 + 1} \right)dx\]

\[ = \frac{1}{2}\int\frac{1}{x - 1}dx - \frac{1}{2}\int\frac{x}{x^2 + 1} dx + \frac{1}{2}\int\frac{1}{x^2 + 1} dx\]

\[ = \frac{1}{2} I_1 - \frac{1}{2} I_2 + \frac{1}{2} I_3 ............(1)\]

\[\text{Now, }I_1 = \int\frac{1}{x - 1}dx\]

Let x - 1 = u

On differentiating both sides, we get

\[ dx = du\]

\[ \therefore I_1 = \int\frac{1}{u}du\]

\[ = \log\left| u \right| + c_1 \]

\[ = \log\left| x - 1 \right| + c_1 ..............(2)\]
\[\text{And, }I_2 = \int\frac{x}{x^2 + 1} dx\]
\[\text{Let }\left( x^2 + 1 \right) = u\]

On differentiating both sides, we get
\[ 2x\ dx = du\]

\[ \therefore I_2 = \frac{1}{2}\int\frac{1}{u}du\]

\[ = \frac{1}{2}\log\left| u \right| + c_2 \]

\[ = \frac{1}{2}\log\left| x^2 + 1 \right| + c_2 .............(3)\]

\[\text{And, }I_3 = \int\frac{1}{x^2 + 1} dx\]

\[ = \tan^{- 1} x + c_3 ..............(4)\]

From (1), (2), (3) and (4), we get

\[ \therefore I = \frac{1}{2}\left( \log\left| x - 1 \right| + c_1 \right) - \frac{1}{2}\left( \frac{1}{2}\log\left| x^2 + 1 \right| + c_2 \right) + \frac{1}{2}\left( \tan^{- 1} x + c_3 \right)\]

\[ = \frac{1}{2}\log\left| x - 1 \right| - \frac{1}{4}\log\left| x^2 + 1 \right| + \frac{1}{2} \tan^{- 1} x + c\]

\[\text{Hence, }\int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx = \frac{1}{2}\log\left| x - 1 \right| - \frac{1}{4}\log\left| x^2 + 1 \right| + \frac{1}{2} \tan^{- 1} x + c\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 16 | पृष्ठ १७६

संबंधित प्रश्न

`∫   x    \sqrt{x + 2}     dx ` 

\[\int\frac{x}{\sqrt{x + 4}} dx\]

Evaluate the following integrals: 

`int "sec x"/"sec 2x" "dx"`

\[\int\frac{1 + \tan x}{1 - \tan x} dx\]

` ∫ {cot x}/ { log sin x} dx `

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{1}{\sqrt{x}\left( \sqrt{x} + 1 \right)} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]


\[\int\frac{1 + \sin x}{\sqrt{x - \cos x}} dx\]

\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]


Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

`  ∫    {1} / {cos x  + "cosec x" } dx  `

Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

\[\int\frac{x + 5}{3 x^2 + 13x - 10}\text{ dx }\]

\[\int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]

\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

\[\int e^{2x} \text{ sin x cos x dx }\]

Evaluate the following integrals:

\[\int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

Evaluate the following integral:

\[\int\frac{1}{x\left( x^3 + 8 \right)}dx\]

 


Evaluate the following integrals:

\[\int\frac{x^2}{(x - 1) ( x^2 + 1)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 - x^2 - 12}dx\]

 


\[\int\frac{x^2 + 1}{x^4 - x^2 + 1} \text{ dx }\]

Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{  dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate:  \[\int\frac{2}{1 - \cos2x}\text{ dx }\]


Evaluate: 

\[\int\frac{1}{\sin^2 x \cos^2 x}dx\]

Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int ("d"x)/sqrt(16 - 9x^2)`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×