Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I }= \int\frac{1}{\sin x + \cos x}dx\]
\[\text{ Putting sin x }= \frac{2 \tan \left( \frac{x}{2} \right)}{1 + \tan^2 \left( \frac{x}{2} \right)} and \cos x = \frac{1 - \tan^2 \left( \frac{x}{2} \right)}{1 + \tan^2 \left( \frac{x}{2} \right)}\]
\[ = \int \frac{1}{\frac{2 \tan \left( \frac{x}{2} \right)}{1 + \tan^2 \left( \frac{x}{2} \right)} + \frac{1 - \tan^2 \left( \frac{x}{2} \right)}{1 + \tan^2 \left( \frac{x}{2} \right)}}dx\]
\[ = \int \frac{\sec^2 \left( \frac{x}{2} \right)}{1 - \tan^2 \left( \frac{x}{2} \right) + 2 \tan \left( \frac{x}{2} \right)} dx\]
\[\text{ Let tan }\left( \frac{x}{2} \right) = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \left( \frac{x}{2} \right)dx = dt\]
\[ \Rightarrow \sec^2 \left( \frac{x}{2} \right)dx = 2dt\]
\[ \therefore I = 2\int \frac{dt}{1 - t^2 + 2t}\]
\[ = - 2 \int \frac{dt}{t^2 - 2t - 1}\]
\[ = - 2 \int \frac{dt}{t^2 - 2t + 1 - 2}\]
\[ = 2\int \frac{dt}{\left( \sqrt{2} \right)^2 - \left( t - 1 \right)^2}\]
\[ = 2 \times \frac{1}{2\sqrt{2}}\text{ ln }\left| \frac{\sqrt{2} + t - 1}{\sqrt{2} - t + 1} \right| + C\]
\[ = \frac{1}{\sqrt{2}}\text{ ln }\left| \frac{\sqrt{2} + \tan \frac{x}{2} - 1}{\sqrt{2} - \tan \frac{x}{2} + 1} \right| + C\]
APPEARS IN
संबंधित प्रश्न
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`