हिंदी

Evaluate the following: d∫12dx(x-1)(2-x) - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`

योग

उत्तर

Let I = `int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`

= `int_1^2 ("d"x)/sqrt(2x - x^2 - 2 + x)`

= `int_1^2 ("d"x)/sqrt(-x^2 + 3x - 2)`

= `int_1^2 ("d"x)/sqrt(-(x^2 - 3x + 2)`

= `int_1^2 ("d"x)/sqrt(-(x^2 - 3x + 9/4 - 9/4 + 2))`  .....[Making perfect square]

= `int_1^2 ("d"x)/sqrt(-[(x - 3/2)^2 - 1/4])`

= `int_1^2 ("dx)/sqrt(1/4 - (x - 3/2)^2)`

= `int_1^2 ("d"x)/sqrt((1/2)^2 - (x - 3/2)^2)`

= `[sin^-1 ((x - 3/2)/(1/2))]_1^2`

= `[sin^-1 ((2x - 3)/1)]_1^2`

= `sin^-1 (4 - 3) - sin^-1 (2 - 3)`

= `sin^-1 (1) - sin^-1 (-1)`

= `sin^-1 (1) + sin^-1 (1)`

 = `2 sin^-1 (1)`

= `2 xx pi/2`

= `pi`

Hence, I = `pi`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise [पृष्ठ १६५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise | Q 31 | पृष्ठ १६५

संबंधित प्रश्न

\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

Evaluate the following integrals: 

`int "sec x"/"sec 2x" "dx"`

\[\int\frac{\cos 2x}{\left( \cos x + \sin x \right)^2} dx\]

\[\int\frac{1 + \tan x}{1 - \tan x} dx\]

\[\int\frac{1}{e^x + 1} dx\]

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{2 \cos x - 3 \sin x}{6 \cos x + 4 \sin x} dx\]

\[\int\frac{{cosec}^2 x}{1 + \cot x} dx\]

\[\int\frac{e^{x - 1} + x^{e - 1}}{e^x + x^e} dx\]

\[\int\frac{1}{\sin x \cos^2 x} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]


\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]

Evaluate the following integrals:

\[\int\frac{\log x}{\left( x + 1 \right)^2}dx\]

 


Evaluate the following integrals:

\[\int e^{2x} \left( \frac{1 - \sin2x}{1 - \cos2x} \right)dx\]

\[\int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx,\text{ where a, b, c are distinct}\]

Evaluate the following integral:

\[\int\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]

Evaluate the following integral:

\[\int\frac{2 x^2 + 1}{x^2 \left( x^2 + 4 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 - x^2 - 12}dx\]

 


Evaluate the following integral:

\[\int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]

Write a value of

\[\int\frac{\left( \log x \right)^n}{x} \text{ dx }\]

Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]


Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]


Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]


Evaluate the following:

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×