Advertisements
Advertisements
प्रश्न
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
उत्तर
\[\text{ Let I} = \int\frac{dx}{\sqrt{1 - x^2}}\]
\[\text{ Let x }= \sin \theta\]
\[ \Rightarrow dx = \cos \theta\]
\[ \therefore I = \int\frac{\cos \theta}{\cos \theta}d\theta\]
\[ = \int d\theta\]
\[ = \theta + C\]
\[ = \sin^{- 1} x + C \left( \because x = \sin \theta \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Evaluate:
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)