Advertisements
Advertisements
प्रश्न
उत्तर
` Note: "Here, we are considering" log x as log_e x `
\[\text{Let I} = \int\frac{1 + \tan x}{x + \log \sec x}dx\]
\[\text{Putting}\ x + \log \sec x = t\]
\[ \Rightarrow 1 + \frac{\sec x \tan x}{\sec x} = \frac{dt}{dx}\]
\[ \Rightarrow \left( 1 + \tan x \right)dx = dt\]
\[ \therefore I = \int\frac{1}{t}dt\]
\[ = \text{log }\left| t \right| + C\]
\[ = \text{log }\left| x + \text{log }\sec x \right| + C \left[ \because t = x + \text{log }\sec x \right]\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integrals:
\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integrals:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`