हिंदी

∫ E 2 X Sin X Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int e^{2x} \text{ sin x cos x dx }\]
योग

उत्तर

\[\text{ Let I }= \int e^{2x} \sin x \text{ cos x dx }\]
\[I = \frac{1}{2}\int e^{2x} \left( 2 \sin x \text{ cos  x }\right)\text{ dx }\]
\[ \Rightarrow I = \frac{1}{2}\int e^{2x} \text{ sin 2x dx }\]
`\text{Considering sin  2x  as first function and` `\text{ e}^{2x}`   ` \text{ as second function} `
\[I = \frac{1}{2}\left[ \sin2x\frac{e^{2x}}{2} - \int2\cos2x\frac{e^{2x}}{2}dx \right]\]
\[ \Rightarrow I = \frac{e^{2x} \sin2x}{4} - \frac{1}{2}\int e^{2x} \cos2xdx\]
\[ \Rightarrow I = \frac{e^{2x} \sin2x}{4} - \frac{1}{2} I_1 . . . . . \left( 1 \right)\]
\[\text{ Where I}_1 = \int e^{2x} \cos2xdx\]
`\text{Considering cos  2x  as first function and` `\text{ e}^{2x}`   ` \text{ as second function} `
\[ I_1 = \cos2x\frac{e^{2x}}{2} - \int - 2 \sin2x\frac{e^{2x}}{2}dx\]
\[ \Rightarrow I_1 = \frac{e^{2x} \cos2x}{2} + \int e^{2x} \sin2x dx\]
\[ \Rightarrow I_1 = \frac{e^{2x} \cos2x}{4} + 2I . . . . . \left( 2 \right)\]
\[ \Rightarrow I = \frac{e^{2x} \sin2x}{4} - \frac{1}{2}\left[ \frac{e^{2x} \cos2x}{2} + 2I \right]\]
\[ \Rightarrow I = \frac{e^{2x} \sin2x}{4} - \frac{e^{2x} \cos2x}{4} - \frac{I}{2} \times 2\]
\[ \Rightarrow 2I = \frac{e^{2x} \left( \sin2x - \cos2x \right)}{4} + C\]
\[ \Rightarrow I = \frac{e^{2x}}{8}\left( \sin2x - \cos2x \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.27 [पृष्ठ १४९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.27 | Q 5 | पृष्ठ १४९

संबंधित प्रश्न

\[\int\frac{x}{\sqrt{x + 4}} dx\]

\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

\[\int\frac{\cos 2x}{\left( \cos x + \sin x \right)^2} dx\]

\[\int\frac{1}{x \log x} dx\]

\[\int\frac{1}{e^x + 1} dx\]

\[\int\frac{\cos 2x + x + 1}{x^2 + \sin 2x + 2x} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{sec x}{\log \left( \text{sec x }+ \text{tan x} \right)} dx\]

\[\int\frac{10 x^9 + {10}^x \log_e 10}{{10}^x + x^{10}} dx\]

` ∫  {1+tan}/{ x + log  sec  x   dx} `

 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 


\[\int\frac{x + 5}{3 x^2 + 13x - 10}\text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 


Evaluate the following integrals:

\[\int e^{2x} \left( \frac{1 - \sin2x}{1 - \cos2x} \right)dx\]

\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]

\[\int\frac{x^2 + 1}{x^4 - x^2 + 1} \text{ dx }\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:

\[\int\frac{x^2 + 4x}{x^3 + 6 x^2 + 5} \text{ dx }\]

Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{   dx }\]


Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]


Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate:  \[\int 2^x  \text{ dx }\]


Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]


Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]


Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×