Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I }= \int e^{2x} \sin x \text{ cos x dx }\]
\[I = \frac{1}{2}\int e^{2x} \left( 2 \sin x \text{ cos x }\right)\text{ dx }\]
\[ \Rightarrow I = \frac{1}{2}\int e^{2x} \text{ sin 2x dx }\]
`\text{Considering sin 2x as first function and` `\text{ e}^{2x}` ` \text{ as second function} `
\[I = \frac{1}{2}\left[ \sin2x\frac{e^{2x}}{2} - \int2\cos2x\frac{e^{2x}}{2}dx \right]\]
\[ \Rightarrow I = \frac{e^{2x} \sin2x}{4} - \frac{1}{2}\int e^{2x} \cos2xdx\]
\[ \Rightarrow I = \frac{e^{2x} \sin2x}{4} - \frac{1}{2} I_1 . . . . . \left( 1 \right)\]
\[\text{ Where I}_1 = \int e^{2x} \cos2xdx\]
`\text{Considering cos 2x as first function and` `\text{ e}^{2x}` ` \text{ as second function} `
\[ I_1 = \cos2x\frac{e^{2x}}{2} - \int - 2 \sin2x\frac{e^{2x}}{2}dx\]
\[ \Rightarrow I_1 = \frac{e^{2x} \cos2x}{2} + \int e^{2x} \sin2x dx\]
\[ \Rightarrow I_1 = \frac{e^{2x} \cos2x}{4} + 2I . . . . . \left( 2 \right)\]
\[ \Rightarrow I = \frac{e^{2x} \sin2x}{4} - \frac{1}{2}\left[ \frac{e^{2x} \cos2x}{2} + 2I \right]\]
\[ \Rightarrow I = \frac{e^{2x} \sin2x}{4} - \frac{e^{2x} \cos2x}{4} - \frac{I}{2} \times 2\]
\[ \Rightarrow 2I = \frac{e^{2x} \left( \sin2x - \cos2x \right)}{4} + C\]
\[ \Rightarrow I = \frac{e^{2x}}{8}\left( \sin2x - \cos2x \right) + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int x/(x^4 - 1) "d"x`