हिंदी

Evaluate the Following Integrals: ∫ 1 ( X 2 + 2 X + 10 ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 

योग

उत्तर

\[\text{Let I }= \int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

\[ = \int\frac{1}{\left[ \left( x + 1 \right)^2 + 3^2 \right]^2}dx\]

\[ \text{Let x + 1 }= 3\tan\theta\]

\[ \text{On differentiating both sides, we get}\]

\[ dx = 3 \sec^2 \theta \text{ dθ }\]

\[ \therefore I = \int\frac{1}{\left[ 3^2 \tan^2 \theta + 3^2 \right]^2}3 \sec^2  θ    \text{ dθ }\]

\[ = \frac{1}{27}\int\frac{\sec^2 \theta}{\sec^4 \theta}d\theta\]

\[ = \frac{1}{27}\int\frac{1}{\sec^2 \theta}d\theta\]

`= {1}/{27}\int \text{ cos}^2  θ  \text{ dθ }`

 

` = {1}/{54}\int\left( 1 + cos2θ  ) dθ `

\[ = \frac{1}{54}\left( \theta + \frac{\sin2\theta}{2} \right) + c\]

\[ = \frac{1}{54}\left( \theta + \frac{\tan\theta}{1 + \tan^2 \theta} \right) + c\]

\[ = \frac{1}{54}\left( \tan^{- 1} \frac{x + 1}{3} + \frac{\tan\left( \tan^{- 1} \frac{x + 1}{3} \right)}{1 + \tan^2 \left( \tan^{- 1} \frac{x + 1}{3} \right)} \right) + c\]

\[ = \frac{1}{54}\left( \tan^{- 1} \frac{x + 1}{3} + \frac{\frac{x + 1}{3}}{1 + \left( \frac{x + 1}{3} \right)^2} \right) + c\]

\[ = \frac{1}{54}\left( \tan^{- 1} \frac{x + 1}{3} + \frac{\frac{x + 1}{3}}{\frac{x^2 + 2x + 10}{9}} \right) + c\]

\[ = \frac{1}{54}\left( \tan^{- 1} \frac{x + 1}{3} + \frac{3\left( x + 1 \right)}{x^2 + 2x + 10} \right) + c\]

\[Hence, \int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx = \frac{1}{54}\left( \tan^{- 1} \frac{x + 1}{3} + \frac{3\left( x + 1 \right)}{x^2 + 2x + 10} \right) + c\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.13 [पृष्ठ ७९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.13 | Q 5 | पृष्ठ ७९

संबंधित प्रश्न

Evaluate : `int_0^3dx/(9+x^2)`


\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

\[\int\frac{\cos 2x}{\left( \cos x + \sin x \right)^2} dx\]

\[\int\frac{1}{x \log x} dx\]

\[\int\frac{1}{e^x + 1} dx\]

` ∫ {cot x}/ { log sin x} dx `

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{2 \cos x - 3 \sin x}{6 \cos x + 4 \sin x} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{{cosec}^2 x}{1 + \cot x} dx\]

\[\int\frac{1}{\sqrt{x}\left( \sqrt{x} + 1 \right)} dx\]

\[\int\frac{1}{\cos 3x - \cos x} dx\]

 ` ∫       cot^3   x  "cosec"^2   x   dx `


\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]


Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{\log x}{\left( x + 1 \right)^2}dx\]

 


Evaluate the following integrals:

\[\int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]

\[\int(3x + 1) \sqrt{4 - 3x - 2 x^2} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)} dx\]

Write a value of

\[\int\frac{\log x^n}{x} \text{ dx}\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{   dx }\]


Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]


Evaluate:  \[\int 2^x  \text{ dx }\]


Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]


Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{  dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate the following:

`int ("d"x)/sqrt(16 - 9x^2)`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int sqrt(2"a"x - x^2)  "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×