Advertisements
Advertisements
प्रश्न
Evaluate : `int_0^3dx/(9+x^2)`
उत्तर
Given,
`I=int_0^3dx/(9+x^2)=int_0^3dx/(3^2+x^2)`
We know that, `intdx/(x^2+a^2)=1/atan^(-1)(x/a)+C`
Therefore,
`I=int_0^3dx/(x^2+3^2)`
`=1/3[tan^(-1)(x/3)]_0^3`
`=1/3[tan^(-1)1-tan^(-1)0]`
`=1/3[pi/4-0]`
`=pi/12`
APPEARS IN
संबंधित प्रश्न
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)