Advertisements
Advertisements
Question
Evaluate : `int_0^3dx/(9+x^2)`
Solution
Given,
`I=int_0^3dx/(9+x^2)=int_0^3dx/(3^2+x^2)`
We know that, `intdx/(x^2+a^2)=1/atan^(-1)(x/a)+C`
Therefore,
`I=int_0^3dx/(x^2+3^2)`
`=1/3[tan^(-1)(x/3)]_0^3`
`=1/3[tan^(-1)1-tan^(-1)0]`
`=1/3[pi/4-0]`
`=pi/12`
APPEARS IN
RELATED QUESTIONS
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
Evaluate the following integrals:
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int x/(x^4 - 1) "d"x`