Advertisements
Advertisements
Question
Solution
\[\text{Let I }= \int\frac{\cos2x + x + 1}{x^2 + \sin2x + 2x}dx\]
\[Putting\ x^2 + \sin2x + 2x = t\]
\[ \Rightarrow 2x + 2\cos 2x + 2 = \frac{dt}{dx}\]
\[ \Rightarrow \left( x + \cos 2x + 1 \right)dx = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int\frac{1}{t}dt\]
\[ = \frac{1}{2}\text{ln}\left| t \right| + C\]
\[ = \frac{1}{2} \text{ln }\left| x^2 + \sin2x + 2x \right| + C \left[ \because t = x^2 + \sin 2x + 2x \right]\]
APPEARS IN
RELATED QUESTIONS
` ∫ cot^3 x "cosec"^2 x dx `
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate:
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`