Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Let I }= \int\frac{\cos2x + x + 1}{x^2 + \sin2x + 2x}dx\]
\[Putting\ x^2 + \sin2x + 2x = t\]
\[ \Rightarrow 2x + 2\cos 2x + 2 = \frac{dt}{dx}\]
\[ \Rightarrow \left( x + \cos 2x + 1 \right)dx = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int\frac{1}{t}dt\]
\[ = \frac{1}{2}\text{ln}\left| t \right| + C\]
\[ = \frac{1}{2} \text{ln }\left| x^2 + \sin2x + 2x \right| + C \left[ \because t = x^2 + \sin 2x + 2x \right]\]
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integrals:
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`