मराठी

Evaluate the Following Integral: ∫ 3 X − 2 ( X + 1 ) 2 ( X + 3 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]
बेरीज

उत्तर

\[\text{Let }I = \int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

We express

\[\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)} = \frac{A}{x + 1} + \frac{B}{\left( x + 1 \right)^2} + \frac{C}{x + 3}\]

\[ \Rightarrow 3x - 2 = A\left( x + 1 \right)\left( x + 3 \right) + B\left( x + 3 \right) + C \left( x + 1 \right)^2 \]

Equating the coefficients of `x^2 , x` and constants, we get

\[0 = A + C\text{ and }3 = 4A + B + 2C\text{ and }- 2 = 3A + 3B + C\]

\[\text{or }A = \frac{11}{4}\text{ and }B = - \frac{5}{2}\text{ and }C = - \frac{11}{4}\]

\[ \therefore I = \int\left( \frac{\frac{11}{4}}{x + 1} + \frac{- \frac{5}{2}}{\left( x + 1 \right)^2} + \frac{- \frac{11}{4}}{x + 3} \right)dx\]

\[ = \frac{11}{4}\int\frac{1}{x + 1}dx - \frac{5}{2}\int\frac{1}{\left( x + 1 \right)^2} dx - \frac{11}{4}\int\frac{1}{x + 3} dx\]

\[ = \frac{11}{4}\log\left| x + 1 \right| + \frac{5}{2\left( x + 1 \right)} - \frac{11}{4}\log\left| x + 3 \right| + c\]

\[\text{Hence, }\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx = \frac{11}{4}\log\left| x + 1 \right| + \frac{5}{2\left( x + 1 \right)} - \frac{11}{4}\log\left| x + 3 \right| + c\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 27 | पृष्ठ १७७

संबंधित प्रश्‍न

\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

\[\int\frac{1}{e^x + 1} dx\]

` ∫ {cot x}/ { log sin x} dx `

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{2 \cos x - 3 \sin x}{6 \cos x + 4 \sin x} dx\]

\[\int\frac{\cos 2x + x + 1}{x^2 + \sin 2x + 2x} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{10 x^9 + {10}^x \log_e 10}{{10}^x + x^{10}} dx\]

\[\int\frac{1}{\sqrt{x}\left( \sqrt{x} + 1 \right)} dx\]

\[\int\frac{1}{\cos 3x - \cos x} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]


Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 


\[\int(3x + 1) \sqrt{4 - 3x - 2 x^2} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 + x^2 - 2}dx\]

\[\int\frac{( x^2 + 1) ( x^2 + 4)}{( x^2 + 3) ( x^2 - 5)} dx\]

\[\int\frac{x^2 + 1}{x^4 - x^2 + 1} \text{ dx }\]

Evaluate:

\[\int\frac{x^2 + 4x}{x^3 + 6 x^2 + 5} \text{ dx }\]

Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate:  \[\int 2^x  \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]


Evaluate:  \[\int\frac{2}{1 - \cos2x}\text{ dx }\]


Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×