Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]
` ∫ \sqrt {{2 sin^2 x/2} / {2 cos^2 x/2 }} dx` `[ ∵ 1 - cos x = 2 sin^2 x/2 & 1 + cos x = 2 cos ^2 x/2]`
\[ = \int\tan\frac{x}{2} dx\]
\[ =\text{ - 2 }\text{ln }\left| \cos\frac{x}{2} \right| + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^3dx/(9+x^2)`
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate:
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)