Advertisements
Advertisements
प्रश्न
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
उत्तर
`(x^3-3x+1)/sqrt(1-x^2)=−(x^2+3x−1+1−1)/sqrt(1−x2)`
`=−(1-x^2+3x−2)/sqrt(1−x2)`
`=(−1−x^2)/sqrt(1−x^2)−(3x−2)/sqrt(1−x^2)`
`=−sqrt(1−x2)−(3x−2)/sqrt(1−x2)`
`=>int(x^3-3x+1)/sqrt(1-x^2)dx`
`=int(−sqrt(1−x2)−(3x−2)/sqrt(1−x2))dx`
`=−intsqrt(1−x2)dx−int(3x−2)/sqrt(1−x2)dx`
`=−intsqrt(1−x2)dx−int(3x)/sqrt(1−x2)dx-2int(1)/sqrt(1−x2)dx`
`=−intsqrt(1−x2)dx−int(3x)/sqrt(t)dt-2int(1)/sqrt(1−x2)dx (Here, t=1−x2.)`
`=−[1/2xsqrt(1−x2)+1/2sin^(−1) x]+3/2xx2sqrtt−2cos^(−1) x+C `
`= −1/2xsqrt(1−x2)−1/2sin^(−1) x+3sqrt(1−x2)−2cos^(−1) x+C`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^3dx/(9+x^2)`
\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`