Advertisements
Advertisements
प्रश्न
\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]
उत्तर
\[\int\frac{\left( e^\{sin^{- 1} x \right)^2}{\sqrt{1 - x^2}} dx\]
` Let e^{sin-1 _x }= t `
Differentiating both sides w . r . t . x,
`e^{sin-1 _x } × 1 / \sqrt{ 1 - x^2 } ` dx = dt
` Now , ∫ (e^{sin-1 _ x }) ^2/ \sqrt{1-x^2} ` dx
` ∫ e^{sin-1 _x } . {e^{sin-1 _ x }}/ \sqrt{1-x^2} ` dx
` ∫ t . dt
\[ = \frac{t^2}{2} + C\]
` (e^{sin-1 _x })^2 /2 + C`
APPEARS IN
संबंधित प्रश्न
Evaluate the following integrals:
` ∫ cot^3 x "cosec"^2 x dx `
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`