Advertisements
Advertisements
प्रश्न
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
उत्तर
\[\int\frac{\cot x}{\sqrt{\sin x}}dx\]
\[ = \int\frac{\cos x}{\sin x \sqrt{\sin x}} dx\]
\[ = \int\frac{\cos x}{\left( \sin x \right)^\frac{3}{2}}dx\]
\[Let \sin x = t\]
\[ \Rightarrow \cos x = \frac{dt}{dx}\]
\[ \Rightarrow \text{cos x dx} = dt\]
\[Now, \int\frac{\cos x}{\left( \sin x \right)^\frac{3}{2}}dx\]
\[ = \int\frac{dt}{t^\frac{3}{2}}\]
\[ = \int t^{- \frac{3}{2}} dt\]
\[ = \left[ \frac{t^{- \frac{3}{2} + 1}}{\frac{- 3}{2} + 1} \right] + C\]
\[ = \frac{- 2}{\sqrt{t}} + C\]
\[ = - \frac{2}{\sqrt{\sin x}} + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integrals:
` ∫ cot^3 x "cosec"^2 x dx `
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral :-
Evaluate the following integral:
Write a value of
Evaluate:
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Evaluate the following:
`int ("d"x)/sqrt(16 - 9x^2)`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)